
POSTER: Accuracy vs. Time Cost: Detecting Android
Malware through Pareto Ensemble Pruning

Lingling Fan†, Minhui Xue†‡, Sen Chen†, Lihua Xu†, Haojin Zhu�

†East China Normal University, Shanghai, China
‡NYU Shanghai, Shanghai, China

�Shanghai Jiao Tong University, Shanghai, China

ABSTRACT
This paper proposes Begonia, a malware detection system through

Pareto ensemble pruning. We convert the malware detection prob-

lem into the bi-objective Pareto optimization, aiming to trade off

the classification accuracy and the size of classifiers as two objec-

tives. We automatically generate several groups of base classifiers

using SVM and generate solutions through bi-objective Pareto op-

timization. We then select the ensembles with highest accuracy of

each group to form the final solutions, among which we hit the

optimal solution where the combined loss function is minimal con-

sidering the trade-off between accuracy and time cost. We expect

users to provide different trade-off levels to their different require-

ments to select the best solution. Experimental results show that

Begonia can achieve higher accuracy with relatively lower over-

head compared to the ensemble containing all the classifiers and

can make a good trade-off to different requirements.

Keywords
Malware Detection; Ensemble Pruning; Pareto Bi-objective Opti-

mization; Begonia

1. INTRODUCTION
Mobile devices have become the potential target of attackers due

to the massive downloads of applications in recent years. Mali-

cious applications that illegally obtain private information or per-

form harmful actions to the devices pose a severe threat in our daily

life. Recent approaches tried to alleviate this problem to achieve

high detection accuracy by applying machine learning. For ex-

ample, DREBIN [1] extracted thousands of features for machine

learning and achieved high accuracy in malware detection. Smutz

et al. [5] applied ensemble learning to malware detection, which

improved the true positive rate by detecting poor classifiers and

providing a confidence in the prediction of ensemble classifiers to

indicate that the classifier is not fit to provide an accuracy respond.

Ensemble learning is also applied to hardware-supported malware

detection [3]. However, these approaches only focus on the detec-

tion accuracy, but neglect the computational cost.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS’16 October 24-28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4139-4/16/10.

DOI: http://dx.doi.org/10.1145/2976749.2989055

In this paper, we propose a malware detection system through

Pareto ensemble pruning to trade off the classification accuracy and

the computational cost. Pareto ensemble pruning [4] formulates

this classification problem as a bi-objective optimization problem,

with accuracy and computational cost as the two objectives. We

take the vote of the predictions to automatically generate pruned

ensembles. Since the prediction time of the ensembles is in the unit

of millisecond level, we further evaluate the performance with re-

spect to the training time of different groups (different sizes of base

learner pools) and trade off the accuracy and the time of ensem-

ble pruning process. Furthermore, we select the ensemble of the

highest accuracy in each group to form the Pareto solutions, among

which users are required to provide a trade-off level (i.e., weight) to

obtain the best required solution where the combined loss function

is minimal. Experimental results show that our detection system,

termed Begonia, can achieve relatively higher accuracy with rela-

tively fewer learners compared to the ensemble containing all the

base classifiers.

In summary, we make the following contributions:

• We propose a customized trade-off between accuracy of mal-

ware classification and computational cost.

• We provide an automatic Pareto ensemble pruning frame-

work for malware detection.

2. BEGONIA ARCHITECTURE
The high level execution process of our approach, as shown in

Figure 1, occurs in four phases: (i) Reverse engineering, which

prepares resource files for extracting features by decompiling the

APKs; (ii) Feature Extraction, which extracts features from each

application using both static and dynamic analysis; (iii) Ensem-
ble pruning, which trains large sets of labeled Android applica-

tions to obtain several groups of base classifiers containing n clas-

sifiers (n = 10, 20, . . .) and selects the base classifiers guided by

bi-objective optimization, to trade off accuracy and computational

cost; and (iv) Classification, which classifies the dataset into differ-

ent categories, benign and malicious, based on the optimal pruned

ensembles.

We provide an ensemble selection approach based on Pareto op-

timal to trade off accuracy and computational cost. Since the pre-

diction time of the ensembles is so small compared to the pruning

time, we only evaluate the performance with respect to the pruning

time, and trade off the accuracy and the time of ensemble prun-

ing process. We train different numbers of base learners for each

group using SVM, and select the ensemble with highest accuracy

via Pareto ensemble pruning. Obviously, the more base learners it

trains, the more time it will take to prune the ensemble with highest

accuracy for each group. The selected ensembles are then provided

to the decision makers to select an optimal solution considering

1748

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2976749.2989055&domain=pdf&date_stamp=2016-10-24

·XML
·SMALI

Decompile

Extractor

DroidBox LOGS

Aggregator

Accuracy
Cost

��

��
��

��

Bi-objective guided

��

��
��

��
��

��

Accuracy
Cost

��

��
��

��

Bi-objective guided

��

��
��

��
��

��

Cost
Accuracy ��

��
��

��

n=10

n=50

Figure 1: Overview of Begonia

other requirements and information. Compared to one-objective

optimization that usually has only one optimal solution, Pareto op-

timal has multiple optimal solutions, and all the solutions have re-

deeming features. They cannot be simply excluded. Pareto optimal

is introduced to explain the dominant relation between each solu-

tion. The Pareto domination relation is then formalized as follows.

DEFINITION 1. (Pareto Domination)
Let h = (h1, h2) : S → R

2 denote the objective vector mapping
from the solution space S to R

2. For two solutions u, v ∈ S, u
dominates v iff it meets the following conditions:
(1) h1 (u) ≤ h1 (v) and h2 (u) ≤ h2 (v)
(2) h1 (u) < h1 (v) or h2 (u) < h2 (v)
(For simplicity, vectors will not be denoted by boldface characters
in this paper.)

A solution is Pareto optimal if there does not exist a solution

that can be better without sacrificing some of the other objective

values. More specifically, a solution u is Pareto optimal if there is

no other solution in S that dominates u. The solutions are provided

to the decision makers to select an optimal solution considering

other requirements and information.

Ensemble pruning, also known as ensemble selection, selects a

subset of classifiers from base classifiers set and classifies a new

dataset by taking the vote of their predictions. It tries to achieve the

goal that the accuracy of the combining prediction results improves

and in parallel the computational overhead reduces compared to the

ensemble containing all the classifiers. Consider the number of the

base learners in Bm = {b1, . . . , bm} is m, and let Tt denote a

pruned classifier set with the selected vector t ∈ {0, 1}m, where

ti = 1 indicates the base learner bi is selected for the ith compo-

nent. The optimal pruned ensemble Topt.sel can be formulated as

follows:

Topt.sel = argmin
t∈{0,1}m

E (Tt) + w · |Tt| ,

where E (Tt) is the validation error rate of Tt. Since the mea-

surement of generalization classification performance is hard to

declare, we use the validation error on the validation date set in-

stead. Given a validation dataset with k instances, for validation

instance i, Tt (xi) is the prediction value of Tt, and yi is the actual

value. E (Tt) is calculated as

E (Tt) =
1

k

k∑

i=1

χ (Tt (xi) �= yi) ,

where χ (·) is the indicator function, which equals 1 if the ex-

pression holds; otherwise, it equals 0, |Tt| = ∑m
i=1 ti is the size

of the selected learners, w ∈ [0,+∞] is the trade-off level, and

E (Tt)+w · |Tt| is the combined loss function aiming to obtain the

solutions that minimize the combined loss to achieve good perfor-

mance.

Consider there are several trade-off levels to be solved, the op-

timal pruned ensemble T
(i)
opt.sel can be defined based on different

trade-off levels wi, for all i:

T
(i)
opt.sel = argmin

t∈{0,1}m
E (Tt) + wi · |Tt| .

ALGORITHM 1: Customized Ensemble Pruning

Input: The training set N1, the validation set N2, and Trade-off levels
W = {w1, w2, . . . , wl}.

Output: Pruned ensembles T =
{
T

(1)
opt.sel, T

(2)
opt.sel, . . . , T

(l)
opt.sel

}
.

1: Let f (Tt) = (E (Tt) , |Tt|) denote the bi-objective function
2: B10 = g(N1), B20 = g(N1), . . . , Bm = g(N1)
3: I = {bi-objective-solver (f (Tt))}
4: P = {p1, p2, . . . , pq}

P : the ensemble with the highest accuracy of each group
5: for j = 1 to l do
6: T

(j)
opt.sel = argminTt∈P E (Tt) + wj · |Tt|

7: end for
8: return T =

{
T

(1)
opt.sel, T

(2)
opt.sel, . . . , T

(l)
opt.sel

}
.

As shown in Algorithm 1, the ensemble pruning process takes as

input the training dataset, the validation set, and outputs the pruned

ensembles that minimize the combined loss with wi. g(N1) de-

notes that the training set for each base learner is randomly chosen

from N1 in an out-and-in manner. The base classifiers of different

groups are generated on different training sets using SVM. We im-

plement the PEP algorithm [4] to solve the bi-objective optimiza-

tion problem, and return a Pareto optimal ensemble set I for each

group. The idea behind PEP solver is that it randomly selects an en-

semble from the base classifier pool, denoted as t ∈ {0, 1}m, stores

it in P , and flips each bit with probability 1
m

and generates t′. The

goal is to evaluate if there exist solutions in P that dominate t′. If

it is true, it continues this process without augmenting P ; other-

wise it excludes the ones that are dominated by t′ and adds t′ into

P . From the second selection on, it selects an ensemble each time

from P , flips, and generates another ensemble. This process is it-

erative until it reaches the upper-bound of iteration times. Finally,

P contains the Pareto solutions. We then pick out the ensembles

with the highest accuracy of each group P = {p1, p2, . . . , p5}
(see line 4 in Algorithm 1) to determine the final ensembles with

different trade-off levels.

1749

3. EMPIRICAL EVALUATION
The goal of our experiments is to examine the relation between

accuracy and time cost of real-time analysis.

3.1 Dataset and Setup
The 4,000 benign samples are downloaded from Google Play

Store, and the 4,000 malicious samples are from [2]. Following the

methodology of [2], we select 155 features in total to perform a

binary classification. Four types of features are shown below:

• Permission. Android required permission for each app can

be extracted from the AndroidManifest file. It is often used

as a metric to detect malware. We finally select 59 out of the

original 120 permissions.

• Sensitive API Calls. API calls are extracted from the smali
files that are generated by decompiling the APKs. We finally

select 90 out of the 240 extracted sensitive API calls.

• Sequence. Sequence is extracted from smali files by record-

ing the number of sensitive API calls requested by the

malicious apps and the benign ones, respectively. Three

quantitive metrics are applied to extract features, which are

“Subtraction-Differential” metric, “Logarithm-Differential”

metric, and “Subtraction-Logarithm” metric [2].

• Dynamic Behavior. Dynamic behavior observes the mali-

cious activities triggered by each application through ana-

lyzing the log files of DroidBox [2].

We automatically generate the base classifiers on each training

set using SVM, whereby we prune the base classifiers and calculate

the error rate on the validation set. The size of the base classifier

pool is n (n = 10, 20, . . . , 50 of each group in our experiment).

Iteration times is set to be
⌈
n2 log n

⌉
when dealing with the bi-

objective solver [4].

3.2 Accuracy vs. Time Cost
Table 1 shows that ensemble pruning takes more time to obtain

an optimal ensemble when pursuing higher accuracy. To trade off

the two objectives, provided by a trade-off level w, we select the

final ensemble that minimizes the combined loss (i.e., E (Tt)+w ·
|Tt|). For example, as shown in Figure 2, given different trade-off

levels, w = 0.0006 and w = 0.00025. The final ensembles are the

p2 and p4 accordingly, minimizing the combined errors.

Table 1: Accuracy vs. Time Cost

Group Size Time (sec) Accuracy
10 60 93.40%

20 460 94.20%

30 1,546 94.70%

40 3,654 95.00%

50 7,450 95.20%

Note that accuracy column indicates the highest accuracy of each group.

3.3 Discussion
(i) Dependency on bi-objective Pareto optimization solver. The

ensembles selected by Algorithm 1 highly rely on the performance

of the bi-objective solver. The computational complexity of the

solver used is expected to O (
k2log k

)
, indicating that the expected

iterations for generating the approximating optimal Pareto set is

O (
k2log k

)
, where k is the size of the base classifier pool. More-

over, the solver [4] has been proved to be more effective than other

ensemble pruning methods, thereby rendering the performance of

our approach relatively reliable.

(ii) Limitations of ensemble pruning process. Since we use Bag-

ging to obtain our base classifiers, the random out-and-in strategy

�

�

�

�

�

0 10 20 30 40 50 60

0.
04

5
0.

05
0

0.
05

5
0.

06
0

0.
06

5
0.

07
0

Number of base classifiers to be pruned

E
rr

or
 r

at
e

0.07=y+0.0006x

0.060=y+0.00025x

p1

p2

p3

p4
p5

Pareto Set P

Figure 2: An example of selecting an optimal from Pareto solu-
tions

of selecting the training set may cause some randomness in each

training process. Different size of the training set and different it-

eration times of the Pareto ensemble pruning may affect the perfor-

mance of the pruned ensembles. We therefore conduct our experi-

ment n times to choose the best size and iteration times to ensure

our experimental results reliable.

4. CONCLUSION
In this paper, we proposed a malware detection system, termed

Begonia, through Pareto ensemble learning to trade off classifica-

tion accuracy and time cost. (We only consider the pruning time

in this paper, since prediction time is so small as to be negligible.).

Experimental results show that Begonia can trade off accuracy and

time cost when given a desirable trade-off level and achieve a rel-

atively higher accuracy with relatively lower overhead. Only time

will tell whether Begonia can be highly effective either as a stan-

dalone system or as a complementary technique to contemporary

tools to overcome the limitations of traditional anti-malware solu-

tion in detecting the zero-day and modern malware.

Acknowledgements
This work was supported in part by the National Natural Sci-

ence Foundation of China, under Grant 61502170, 61272444,

61411146001, U1401253, and U1405251, in part by the Sci-

ence and Technology Commission of Shanghai Municipality under

Grant 13ZR1413000, and in part by Pwnzen Infotech Inc.

5. REFERENCES
[1] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and

K. Rieck. Drebin: Effective and explainable detection of

android malware in your pocket. In NDSS, 2014.

[2] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu. Stormdroid: A

streaminglized machine learning-based system for detecting

android malware. In Proceedings of the 11th ACM on Asia
CCS, pages 377–388. ACM, 2016.

[3] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. B.

Abu-Ghazaleh, and D. V. Ponomarev. Ensemble learning for

low-level hardware-supported malware detection. In RAID,

2015.

[4] C. Qian, Y. Yu, and Z.-H. Zhou. Pareto ensemble pruning. In

AAAI, 2015.

[5] C. Smutz and A. Stavrou. When a tree falls: Using diversity in

ensemble classifiers to identify evasion in malware detectors.

In NDSS, 2016.

1750

